Visit complete Deep Learning roadmap

← Back to Topics List

Decision Making For Reinfrocement Learning

Reinforcement Learning (RL) is the science of decision making. It is about learning the optimal behavior in an environment to obtain maximum reward. In RL, the data is accumulated from machine learning systems that use a trial-and-error method. Data is not part of the input that we would find in supervised or unsupervised machine learning.

Example

The problem is as follows: We have an agent and a reward, with many hurdles in between. The agent is supposed to find the best possible path to reach the reward. The following problem explains the problem more easily.

The above image shows the robot, diamond, and fire. The goal of the robot is to get the reward that is the diamond and avoid the hurdles that are fired. The robot learns by trying all the possible paths and then choosing the path which gives him the reward with the least hurdles. Each right step will give the robot a reward and each wrong step will subtract the reward of the robot. The total reward will be calculated when it reaches the final reward that is the diamond.

References

Resources Community KGx AICbe YouTube

by Devansh Shukla

"AI Tamil Nadu formely known as AI Coimbatore is a close-Knit community initiative by Navaneeth with a goal to offer world-class AI education to anyone in Tamilnadu for free."